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DEVELOPMENT AND ANALYSIS OF A MODIFIED SCREENING PROCEDURE

TO INCREASE ACCEPTABLE PRODUCT

Youn-Min Chou D. B. Owen

Division of Mathematics, Computer Department of Statistics
Science and Systems Design Southern Methodist University

The University of Texas at San Antonio Dallas, Texas 75275
San Antonio, Texas 78285

Much work has been done on screening procedures under the

assumption of a bivariate normal distribution. However, very

little effort has been expended on data which are from a trun-

cated bivariate normal distribution. Methods are eveloped for

a screening procedure to increase acceptable product from a

truncated distribution. An acceptance criterion on a linear

combination of the largest order statistics from a truncated

normal population with a given truncation point is discussed.

This paper also uses the approximate distribution of the sample

correlation coefficient in random samples of any size drawn from

a singly truncated bivariate normal distribution to obtain a

lower confidence limit on the population correlation coefficient

p. The screening procedure discussed here is based on knowledge

of the truncation point, the sample size and the lower confidence

limit for p.

KEY WORDS AND PHRASES: Singly truncated bivariate normal distri-

bution; performance variable; screening

variable; acceptance sampling; truncated

normal distribution.



1. INTRODUCTION

In developing screening procedures, many methods can be utilized,

depending on the data we have and the nature of the problem. Most of

the previous work done in the area of screening procedures, e.g., Owen-

Boddie(1976), Owen et. al.(1975 and 1977) , is based on data from a

bivariate normal distribution, which is utilized to calculate the pro-

portion successful after selection. In this paper we will consider

screening procedures when the data available are from a truncated

bivariate normal distribution.

A performance variable with a one-sided specification cannot be

measured directly, but a related variable (called a screening variable)

can be measured. In the language of acceptance sampling the performance

variable may be lifetime or some other variable for which the act of

measuring would degrade the item. If the quality control engineer only

keeps records of those values of the performance variable and of the

screening variable for the acceptable product, then the values of the

performance variable must exceed some lower limit, say w 0. Hence, past

data may only be available on a singly truncated bivariate normal distri-

bution.

Let Y be a future performance variable and X be a future screening

variable having a joint bivariate normal distribution with parameters

(Ux 2 ,,2;p). Let W be the past screening variable which exceedsxx y y

i.e., W has a truncated normal distribution with parameter (x,a2).
x

Let Z be the past performance variable and then (W,Z) follow a singly

truncated bivariate normal distribution where only W is truncated. A

one-sided lower specification limit, L, is given on the future performance
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variable Y, i.e., all items with Y values above L are acceptable and

those with Y values below L are not acceptable. Suppose that the pro-

portion of acceptable items in the future is y before screening. That

is, the proportion above the lower specification before screening is y.

The screening procedure is set up to raise the proportion successful

from y to 8, where 8 > y. Our procedure will be to accept all items

for which X > aW + bwo , where b -i-a and W is the largest order

statistic from a truncated normal distribution (P, 2 ) based on a sample

of size n. After screening we want to be 1001 % sure that

PYIXW(n), P{Y 5, L(X >, aW (n)+ bw o  > 6, i.e., the proportion of Y's

greater than L is at least 6 in the screened population. The reason

for using aW(n) + bw instead of a linear combination of the sample

n

mean W = W./n and sample standard deviation SW is that after trun-
n i=l

cating a normal distribution, many nice properties no longer exist and

to our knowledge no manageable expression for the joint density function

of Wn and SW has yet been derived.

2. PROBABILITY EXPRESSION

Consider the case where the parameters wi a2, and a2 are
x'y y

known and p is unknown. Let P{Y > L1 = y and P{X > w 0 - p be given.0

We make the transformations ZI = (X - 1x)/ax, Z2 = (Y - )/Vy,

U = (W(n) - wo)/a, V =Z - aU. Let (L- y)/ a = -K and

(w° - )x M -K . The problem then becomes one of finding "a" such thatx p

P[P{Z 2 > -K IV > -K ) > 61- n where the outer probability is with

respect to the estimator of p and the inner probability is the conditional

normal given the screening procedure and the correlation. Then



.. . - ° . a ".-- -- - . . . . .

4

A = P{Z 2 > -K yIV > -K p can be written as

- Pn _ dxaf G(x-K)-l+p]nG' (-ax+K ) G

nf'[(x-K )-l+pn- 1 G'(x - K ) G(-ax+ K )dx

0pp p
I z

where G'(z) - (21T). exp(-z 2/2) and G(z) - f G'(t)dt for-- < z <

are the univariate normal density and cumulative distribution, respectively.

Theorem 2.1 Under the assumptions given in sections 1 and 2,

A = PyIx, W (n ) , 
- Y >" LIX >, aW () + bw } is an increasing function of p.

The proof of this theorem is obtained by showing thac the numerator

of equation (2.1) is a monotonically increasing function of p since the

denominator is free of p and positive.

Suppose that we want to be 100n% sure that

PyixW(n),P{Y > L X > aW(n) + bwo  > 6, that is, that P{A >. 61 = r.

This is equivalent to P{p >. p*} > n for some p*. Our goal is to find

a and b(= -a + 1) such that

,*{Y > LIX >W( + bwl)= d.P YIXW (n) 2*{ L : aW (n) + ow01-6

In order to solve for a, p* has to be known. Once p* is known, the

problem which remains is to solve the following equation for a:

~ap*x +K -..P*K
a 0(G(x - K ) + p-lp G'(-ax + K )G 1.dx

(2.2)

nj[G(x - Kp) +p-l G'(x - K )G(-ax + K )dxp p

Solutions to this equation will be discussed in section 5.
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3. DISTRIBUTION OF THE SAMPLE CORRELATION COEFFICIENT

Let (Wi,Z i)(i - 1, ... , n) be a random sample of size n from the

past record which follows a singly truncated bivariate normal distribution,

where W > wo, i - 1, ..., n. In the following discussion we consider

the standardized singly truncated bivariate normal distribution, in which

only W is truncated. Extension to the non-standardized case is straight-

forward by using new variables (vz x+ a xW, Vy + a Z) instead of (W,Z). Letfowad y sig ewvaiale x( x yy

be the sample correlation coefficient. Let F R(.;p) and FR(.;p) be the

respective distribution functions of RT and R. Applying equation (32) of

Gayen (1951), the c.d.f. of R is given by

F (r;p T F R(r;p T) + (C1L41 + C2 L61 F R(r;pT

R T 2 F

+(CIL +C2L )- - F (r;p + C2L 6- FR(r; p), (3.1)
1 42 2 6232 R 'T 2 63 3 R TPT  T

where C n- and C n -2
1 - 8n(n+i) 2 12n(n+l)(n+3)'

L4 1 - 3PT( 4 0 + A04) - 4(A 3 1 + A1 3 ) + 2 PTA22,

L -P2( +X 4p( +X 2(2+ 2X
L42  T (A4 0 + A04 ) - 4PT(A31 + A1 3 ) + 2(2 + 22

L -15P (A 2 + X 2) 9P (X2 + X 2 ) + 12X X
61 T30 03 T 21 12 12 21

+ 18(X 3 0X2 1 + X03X12),

L = 9P2( 2 + X) 3(8 + 5p2)(X2 + A2  +36p X
62 T(30 03 T 21 12 T 2112

+ 30P (X A + X AX
T 30 21 03 12'

3 2 22 + 2 2 2
L63 -PT(X30 + X03 )  3pT(4 + pT) ()21 +1X2) + 4(2 + 3PT ) 2112

+ 6p2(X X +X
T 30 21 03 12

T is the correlation coefficient between W and Z and the AX

are the semi-invariants of the singly truncated bivariate normal



distribution.

The results of the theoretical distribution of RT were checked by

comparison with a Monte Carlo simulation. For each of the sample sizes

n - 3, 15, 50, truncation points w = 0. (-.5) -3. and p--,90 (.10) .90,

4000 values of 1% were generated. We made comparisons between the

empirical and t',e theoretical c.d.f. of RT based upon the Kolmogorov-

Smirnov test and conclude that the approximation holds well.

4. A LOWER CONFIDENCE LIMIT ON

As we have seen from Section 2, a 100% lower confidence limit p*

on p is required for our acceptance criterion X >, aW(n) + (1 - a)w(n) o

Let F R(.;p) be the c.d.f. of RT. By the probability integral transfor-

mation theorem, FR (T;p) follows a uniform (0,1) distribution. It

follows that P{F (R;p) < n} = n. Let g(p) -- F (R T;p) - n; then

P{g(p) .< 0 1 = n. From the inequality g(r,) < 0, we would like to get an

inequality p > p* so that p* is a 100n% lower confidence limit on p. To

do this, we need RT, n and wo. Since the exact distribution of RT is not

known, we will use the approximate distribution of RT given by equation

(3.1). It can be shown that the function g(p) is a decreasing function

of p. For each given confidence coefficient n, p* can be obtained by

examining the root of the equation g(p) = 0.

Since -1 < p*< 1, we can use the IMSL (1979) subroutine ZFALSE, i.e.,

the false position method, to find the root of g(p) 0. Tables 1-4 give

the result of this computation for n 15, 50 and RT = .40, .50.

L_
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5. SCREENING CRITERION

For given 71, n, , Y, 6( > Y) and wo(- ), a 100n% lower confidence

limit p* can be found using the method in Section 4. Thus a is the only

unknown in equation (2.2). We use the Gauss Laguerre quadrature to approxi-

mate integrals of the form fex h(x) dx with h(x) a function of x. The
0

solutions can be found iteratively by using an algorithm due to Miller

(1956), which finds the zeros of nonlinear functions. The screening

criterion is X > aW (n)+ (1- a)w

6. EXAMPLE

Let Y be the performance variable for some device which is expensive

to measure. Assume X and Y have a joint standard bivariate normal

distribution with unknown correlation coefficient. A sample of size n = 50

is taken from the past record in which all the performance scores are at

least 0, and the highest performance score in this sample is W(n ) - 2.6.

The sample correlation coefficient RT is found to be .50. Suppose we want

to be 95% sure that the proportion of acceptable items will be raised from

y - .70 to 6 - .90 after screening. We use linear interpolation in Table 4

and find p* .45814. Then we compute a from equation (2.2) and it is

a = .37280. Thus our screening criterion is to accept all items for which

X > .96928.

7. CONCLUSION

It has always been necessary to solve screening problems first by

assuming all parameters known. Then estimates of the parameters based on

a training set are used. In this paper we have assumed that x, a, 1 a y' y

and w, the truncation point were known. Obviously there still exists the

unsolved problem of what to do when any of these parameters are unknown.
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TAB LE 1

CONFIDENCE COEFFICIENT ETA WHEN N= 15 AND RT .40

WO 0.000 -0.500 -1.000 -1.500 -2.000 -2.500 -3.000

RHO *
-.65 .99930 .99973 .99990 .99996 .99998 .99998 .99999
-.6o .99871 .99942 .99975 .99989 .99993 .99995 .9,9995
-.55 .99783 .99890 .99947 .99972 .99983 .99986 .99987
-.50 .99658 .99807 .95896 .99940 .99960 .99967 .99969
-.45 .99488 .99685 .99812 .99882 .99916 .99929 .99933

-.40 .99262 .99509 .99682 .99785 .99837 .99859 .99866
-.35 .98971 .99266 .99487 .99628 .99705 .99739 .99751
-.30 .98600 .98937 .99205 .99388 .99493 .99542 .99560
-.25 .98136 .98502 .98809 .99031 .99166 .99231 .99255
-.20 .97562 .97937 .98266 .98517 .98676 .98757 .98788

-.15 .96859 .97213 .97538 .97796 .97967 .98057 .98092

- 10 .96006 .96298 .96577 .96809 .96967 .97053 .97088
.00 .93745 .93745 .93745 .93745 .93745 .93745 .93745
-.05 .94977 .95016 .95333 .91585 .95592 .95651 .95676

.25 .83205 .80823 .78200 .75720 .73823 .72'709 .72221

.30 .79880 .76639 .73071 .69710 .67157 .65669 .65023

.35 .76008 .71775 .67144 .62828 .59596 .57738 .56941

.40 .71518 .66179 .60415 .55147 .51285 .49109 .48194

.45 .66340 .59821 .52937 .46821 .42472 .40089 .39109

.50 .60409 .52709 .44833 .38108 .33517 .31089 .30121

.55 .53681 .44910 .36327 .29376 .24874 .22598 .21725

.6o .46151 .36579 .27756 .21090 .17053 .15122 .14415

.65 .37891 .28000 .19582 .13769 .10533 .09087 .08588

.7o .29103 .19616 .12357 .07892 .05655 .04734 .04439

.75 .20200 .12045 .06632 .03764 .02501 .02030 .01892

.80 .11897 .06o07 .02780 .01367 .00834 .00657 .00611

.85 .05228 .02099 .00776 .00320 .00177 .00135 .00125

.90 .01252 .00362 .00098 .00031 .00015 .00011 .00010

.95 .00052 .00008 .00001 .00000 .00000 .00000 .00000
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TABLE 2

CONFIDENCE COEFFICIENT ETA WHEN N= 15 AND R T .50

Wo 0.000 -0.500 -1.000 -1.500 -2.000 -2.500 -3.000
RHO*

-.6o .99968 .99987 .99995 .99998 .99999 .99999 .99999
-.55 .99943 .99973 .99988 .99995 .99997 .99997 .99998
-.5o .99906 .99951 .99975 .99987 .99992 .99993 .99994
-.45 .99853 .99915 .99953 .99972 .99981 .99984 .99985
-.40 .99780 .99861 .99915 .99945 .99960 .99966 .99968

-.35 .99682 .99783 .99855 .99899 .99922 .99932 .99935
-.30 .99553 .99672 .99763 .99823 .99857 .99872 .99877
-.25 .99384 .99519 .99628 .99705 .99751 .99772 .99780
-.2o .99167 .99311 .99434 .99525 .99582 .99610 .99621
-.15 .98891 .99032 .99159 .99259 .99323 .99357 .99370

-.10 .98543 .98664 .98779 .98872 .98936 .98970 .98983
-.05 .98105 .98182 .98259 .98324 .98369 .98394 .98405
.00 .97558 .97558 .97558 .97558 .97558 .97558 .97558
.05 .96877 .96754 .96625 .96507 .96419 .96369 .96347
.10 .96032 .95726 .95396 .95088 .94852 .94714 .94653

.15 .94985 .94421 .93796 .93200 .92737 .92461 .92338

.20 .93690 .92771 .91734 .90727 .89935 .89459 .89247

.25 .92091 .90698 .89104 .87538 .86298 .85550 .85216

.3o .90117 .88106 .85785 .83493 .81677 .80582 .80094

.35 .87681 .84886 .81647 .78454 .75938 .74433 .73767

.40 .84679 .80908 .76555 .72302 .68995 .67044 .66192

.45 .80980 .76033 .70386 .64966 .60843 .58460 .57438

.50 .76432 .70115 .63052 .56463 .51605 .48878 .47738

.55 .7C858 .63025 .54541 .46946 .41585 .38688 .37515

.60 .64068 .54680 .44974 .36768 .31299 .28485 .27393

.65 .55885 .45111 .34681 .26519 .21472 .19033 .18134

.70 .46204 .34561 .24277 .17022 .12953 .11133 .10505

.75 .35124 .23630 .14697 .09215 .06500 .05398 .05049

.80 .23196 .1341.9 .07076 .03845 .02480 .0198V2 .01849

.85 .11814 .05482 .02310 .01049 .00612 .00474 .00440

.90 .03442 .01150 .00357 .00128 .00065 .00049 .00045

.95 .00197 .00037 .00006 .00001 .00000 .00000 .00000



TABLE 3

CONFIDENCE COEFFICIENT ETA WHEN N- 50 AND R Ta.40

WO 9.000 -0.5003 -1.000 -1.500 -2.000 -2.500 -3.000
RHO*

-.15 .99978 .99985 .99990 .99993 .99994 .99995 .99995
-.103 .99954 .99964 .99971 .99977 .99980 .99982 .99983
-.05 .99907 .99917 .99925 .99933 .99937 .99940 .99941
.00 .99819 .99819 .99819 .99819 .99819 .99819 .99819
.05 .99658 .99624 .99585 .99548 .99519 .99502 .99494

.10 .99375 .99252 .99104 .98952 .98827 .98749 .98714

.15 .98890 .98571 .98168 .97734 .97363 .97125 .97015

.20 .98079 .97376 .96452 .95424 .94525 .93945 .93674

.25 .96762 .95366 .93488 .91371 .89517 .88322 .87766.

.30 .94681 .92130 .88684 .84829 .81509 .79405 .78439

.35 .91490 .87166 .81419 .75186 .70013 .66843 .65422

.4o .86759 .79953 .71256..62342 .55383 .51331 .49579

.45 .80016 .70106 .58263 .47124 .39158 .34840 .33061

.50 .70852 .57636 .43333 .31410 .23842 .20106 .18660

.55 .59120 .43246 .28280 .17677 .11921 .09398 .08494

.6o .45229 .28499 .15411 .07923 .04596 .03339 .02930

.65 .30434 .15589 .06530 .02606 .01253 .00828 .00704

.70 .16862 .06487 .01934 .00557 .00213 .00126 .00104

.75 .06880 .01780 .00338 .00064 .00018 .00010 .00008
.8o .01681 .00250 .00026 .00003 .00001 .00000 .00000

.85 .00159 .00011 .00000 .00000 .00000 .00000 .00000

.90 .00002 .00000 .00000 .00000 .00000 .00000 .00000
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TABLE 4

CONFIDENCE COEFFICIENT ETA WHEN N- 50 AND RT-.50

WO 0.000 -0.500 -1.000 -1.500 -2.000 -2.500 -3.000
RHO*
.05 .99980 .99978 .99975 .99972 .99970 .99968 .99968
.10 .99958 .99947 .99934 .99919 .99907 .99899 .99895
.15 .99913 .99880 .99835 .99783 .99736 .99704 .99689
.20 .99824 .99736 .99609 .99452 .99303 .99200 .99150
.25 .99651 .99440 .99115 .9d3699 .98293 .98010 .97871

.30 .99322 .98847 .98092 .97103 .96130 .95450 .95117

.35 .98707 .97704 .96085 .93966 .91902 .90481 .89794

.40 .97580 .95586 .92387 .88295 .84440 .81870 .80659

.45 .95568 .91838 .86039 .78991 .72734 .68773 .66974

.50 .92079 .85563 .76035 .65389 .56744 .51663 .49471

.55 .86259 .75765 .61852 .48119 .38279 .33047 .30936

.6o .77053 .61803 .44295 .29766 .20976 .16873 .15352

.65 .63547 .44232 .26144 .14295 .08562 .06297 .05542

.7o .45827 .25695 .11496 .84737 .02297 .01516 .01287

.75 .26263 .10631 .03200 .00900 .00334 .00194 .00160

.80 .09975 .02473 .00425 .00071 .00019 .00010 .00008

.85 .01699 .00200 .00015 .00001 .00000 .00000 .00000

.90 .00047 .00002 .00000 .00000 .00000 .00000 .00000
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